Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
1.
Biotechnol Prog ; : e3464, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558519

RESUMO

Amino acids are vital components of the serum-free medium that influence the expansion and function of NK cells. This study aimed to clarify the relationship between amino acid metabolism and expansion and cytotoxicity of NK cells. Based on analyzing the mino acid metabolism of NK-92 cells and Design of Experiments (DOE), we optimized the combinations and concentrations of amino acids in NK-92 cells culture medium. The results demonstrated that NK-92 cells showed a pronounced demand for glutamine, serine, leucine, and arginine, in which glutamine played a central role. Significantly, at a glutamine concentration of 13 mM, NK-92 cells expansion reached 161.9 folds, which was significantly higher than 55.5 folds at 2.5 mM. Additionally, under higher glutamine concentrations, NK-92 cells expressed elevated levels of cytotoxic molecules, the level of cytotoxic molecules expressed by NK-92 cells was increased and the cytotoxic rate was 68.42%, significantly higher than that of 58.08% under low concentration. In view of the close relationship between glutamine metabolism and intracellular redox state, we investigated the redox status within the cells. This study demonstrated that intracellular ROS levels in higher glutamine concentrations were significantly lower than those under lower concentration cultures with decreased intracellular GSH/GSSG ratio, NADPH/NADP+ ratio, and apoptosis rate. These findings indicate that NK-92 cells exhibit improved redox status when cultured at higher glutamine concentrations. Overall, our research provides valuable insights into the development of serum-free culture medium for ex vivo expansion of NK-92 cells.

2.
PeerJ ; 12: e17119, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525273

RESUMO

Background: Studies have shown that chronic exposure to job stress may increase the risk of sleep disturbances and that hypothalamic‒pituitary‒adrenal (HPA) axis gene polymorphisms may play an important role in the psychopathologic mechanisms of sleep disturbances. However, the interactions among job stress, gene polymorphisms and sleep disturbances have not been examined from the perspective of the HPA axis. This study aimed to know whether job stress is a risk factor for sleep disturbances and to further explore the effect of the HPA axis gene × job stress interaction on sleep disturbances among railway workers. Methods: In this cross-sectional study, 671 participants (363 males and 308 females) from the China Railway Fuzhou Branch were included. Sleep disturbances were evaluated with the Pittsburgh Sleep Quality Index (PSQI), and job stress was measured with the Effort-Reward Imbalance scale (ERI). Generalized multivariate dimensionality reduction (GMDR) models were used to assess gene‒environment interactions. Results: We found a significant positive correlation between job stress and sleep disturbances (P < 0.01). The FKBP5 rs1360780-T and rs4713916-A alleles and the CRHR1 rs110402-G allele were associated with increased sleep disturbance risk, with adjusted ORs (95% CIs) of 1.75 [1.38-2.22], 1.68 [1.30-2.18] and 1.43 [1.09-1.87], respectively. However, the FKBP5 rs9470080-T allele was a protective factor against sleep disturbances, with an OR (95% CI) of 0.65 [0.51-0.83]. GMDR analysis indicated that under job stress, individuals with the FKBP5 rs1368780-CT, rs4713916-GG, and rs9470080-CT genotypes and the CRHR1 rs110402-AA genotype had the greatest risk of sleep disturbances. Conclusions: Individuals carrying risk alleles who experience job stress may be at increased risk of sleep disturbances. These findings may provide new insights into stress-related sleep disturbances in occupational populations.


Assuntos
Interação Gene-Ambiente , Estresse Ocupacional , Masculino , Feminino , Humanos , Sistema Hipotálamo-Hipofisário , Estudos Transversais , Sistema Hipófise-Suprarrenal , Polimorfismo Genético/genética , Estresse Ocupacional/epidemiologia , Sono/genética
3.
Cancer Lett ; 588: 216806, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38467179

RESUMO

The aim of this study was to investigate the underlying molecular mechanism behind the promotion of cell survival under conditions of glucose deprivation by l-lactate. To accomplish this, we performed tissue microarray and immunohistochemistry staining to analyze the correlation between the abundance of pan-Lysine lactylation and prognosis. In vivo evaluations of tumor growth were conducted using the KPC and nude mice xenograft tumor model. For mechanistic studies, multi-omics analysis, RNA interference, and site-directed mutagenesis techniques were utilized. Our findings robustly confirmed that l-lactate promotes cell survival under glucose deprivation conditions, primarily by relying on GLS1-mediated glutaminolysis to support mitochondrial respiration. Mechanistically, we discovered that l-lactate enhances the NMNAT1-mediated NAD+ salvage pathway while concurrently inactivating p-38 MAPK signaling and suppressing DDIT3 transcription. Notably, Pan-Kla abundance was significantly upregulated in patients with Pancreatic adenocarcinoma (PAAD) and associated with poor prognosis. We identified the 128th Lysine residue of NMNAT1 as a critical site for lactylation and revealed EP300 as a key lactyltransferase responsible for catalyzing lactylation. Importantly, we elucidated that lactylation of NMNAT1 enhances its nuclear localization and maintains enzymatic activity, thereby supporting the nuclear NAD+ salvage pathway and facilitating cancer growth. Finally, we demonstrated that the NMNAT1-dependent NAD+ salvage pathway promotes cell survival under glucose deprivation conditions and is reliant on the activity of Sirt1. Collectively, our study has unraveled a novel molecular mechanism by which l-lactate promotes cell survival under glucose deprivation conditions, presenting a promising strategy for targeting lactate and NAD+ metabolism in the treatment of PAAD.


Assuntos
Adenocarcinoma , Nicotinamida-Nucleotídeo Adenililtransferase , Neoplasias Pancreáticas , Camundongos , Animais , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Ácido Láctico , NAD/metabolismo , Glucose , Camundongos Nus , Lisina , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo
4.
Biotechnol J ; 19(3): e2300654, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38472089

RESUMO

Vigorous ex vivo expansion of NK-92 cells is a pivotal step for clinical adoptive immunotherapy. Interleukin-2 (IL-2) is identified as a key cytokine for NK-92 cells, and it can stimulate cell proliferation after binding to the IL-2 receptor (IL-2R). In this work, the differences in IL-2 consumption and IL-2R expression were investigated between the two culture modes. The results showed that suspension culture favored ex vivo expansion of NK-92 cells compared with static culture. The specific consumption rate of IL-2 in suspension culture was significantly higher than that in static culture. It was further found that the mRNA levels of the two IL-2R subunits remained unchanged in suspension culture, but the proportion of NK-92 cells expressing IL-2Rß was increased, and the fluorescence intensity of IL-2Rß was remarkably enhanced. Meanwhile, the proportion of cells expressing IL-2R receptor complex also increased significantly. Correspondingly, the phosphorylation of STAT5, a pivotal protein in the downstream signaling pathway of IL-2, was up-regulated. Notably, the expression level and colocalization coefficient of related endosomes during IL-2/IL-2R complex endocytosis were markedly elevated, suggesting the enhancement of IL-2 endocytosis. Taken together, these results implied that more IL-2 was needed to support cell growth in suspension culture. Therefore, the culture process was optimized from the perspective of cytokine utilization to further improve the NK-92 cell's expansion ability and function. This study provides valuable insight into the efficient ex vivo expansion of NK-92 cells.


Assuntos
Interleucina-2 , Células Matadoras Naturais , Interleucina-2/metabolismo , Células Matadoras Naturais/metabolismo , Receptores de Interleucina-2/metabolismo , Citocinas/metabolismo , Membrana Celular
5.
Transl Psychiatry ; 14(1): 110, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395985

RESUMO

Early detection of bipolar depression (BPD) and major depressive disorder (MDD) has been challenging due to the lack of reliable and easily measurable biological markers. This study aimed to investigate the accuracy of discriminating patients with mood disorders from healthy controls based on task state skin potential characteristics and their correlation with individual indicators of oxidative stress. A total of 77 patients with BPD, 53 patients with MDD, and 79 healthy controls were recruited. A custom-made device, previously shown to be sufficiently accurate, was used to collect skin potential data during six emotion-inducing tasks involving video, pictorial, or textual stimuli. Blood indicators reflecting individual levels of oxidative stress were collected. A discriminant model based on the support vector machine (SVM) algorithm was constructed for discriminant analysis. MDD and BPD patients were found to have abnormal skin potential characteristics on most tasks. The accuracy of the SVM model built with SP features to discriminate MDD patients from healthy controls was 78% (sensitivity 78%, specificity 82%). The SVM model gave an accuracy of 59% (sensitivity 59%, specificity 79%) in classifying BPD patients, MDD patients, and healthy controls into three groups. Significant correlations were also found between oxidative stress indicators in the blood of patients and certain SP features. Patients with depression and bipolar depression have abnormalities in task-state skin potential that partially reflect the pathological mechanism of the illness, and the abnormalities are potential biological markers of affective disorders.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico , Transtorno Bipolar/diagnóstico , Algoritmos , Máquina de Vetores de Suporte , Biomarcadores
6.
Heliyon ; 10(3): e24911, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38317878

RESUMO

Water bodies provide humans with important hydrological ecosystem services (HESs), directly or indirectly. Water yield, water conservation, and soil conservation are essential to HESs. Since China's reform and opening up, and with its rapid socio-economic development, land use in Jiangxi Province has undergone drastic change, resulting in threats to the ecological environment. This paper evaluates three HESs, water yield, water conservation, and soil conservation, in Jiangxi Province based on land use and rainfall data, quantifies the impacts of different land classes on each ecosystem, predicts future land use using the patch-generating land use simulation (PLUS) model, and finally, discusses the ecological risks in the study area. The following results were obtained: (1) The HESs in the basin increased and then decreased from 2000 to 2020, and the spatial distribution of water yield and water conservation was greatly influenced by rainfall. Soil conservation was mostly consistent with the elevation distribution. (2) Over time, the overall aggregation of HESs in the study area increased. There were small differences in the effects of various land uses on water yield and water conservation, and large differences in the effects on soil conservation. (3) The distribution of ecological risks was not affected by different land use strategies, with the lower ecological risk level 1 dominating. Most risk areas were present in Ganzhou, Ji'an, Shangrao, and Jiujiang. The ecological risk from urban sprawl (US) accounted for the most significant proportion, and that from the ecological protection (EP) strategy accounted for the lowest proportion. This study provides reference for sustainable land use development and ecological risk prevention in the study area.

7.
J Transl Med ; 22(1): 219, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424541

RESUMO

BACKGROUND: The rapid emergence and global dissemination of the Omicron variant of SARS-CoV-2 have posed formidable challenges in public health. This scenario underscores the urgent need for an enhanced understanding of Omicron's pathophysiological mechanisms to guide clinical management and shape public health strategies. Our study is aimed at deciphering the intricate molecular mechanisms underlying Omicron infections, particularly focusing on the identification of specific biomarkers. METHODS: This investigation employed a robust and systematic approach, initially encompassing 15 Omicron-infected patients and an equal number of healthy controls, followed by a validation cohort of 20 individuals per group. The study's methodological framework included a comprehensive multi-omics analysis that integrated proteomics and metabolomics, augmented by extensive bioinformatics. Proteomic exploration was conducted via an advanced Ultra-High-Performance Liquid Chromatography (UHPLC) system linked with mass spectrometry. Concurrently, metabolomic profiling was executed using an Ultra-Performance Liquid Chromatography (UPLC) system. The bioinformatics component, fundamental to this research, entailed an exhaustive analysis of protein-protein interactions, pathway enrichment, and metabolic network dynamics, utilizing state-of-the-art tools such as the STRING database and Cytoscape software, ensuring a holistic interpretation of the data. RESULTS: Our proteomic inquiry identified eight notably dysregulated proteins (THBS1, ACTN1, ACTC1, POTEF, ACTB, TPM4, VCL, ICAM1) in individuals infected with the Omicron variant. These proteins play critical roles in essential physiological processes, especially within the coagulation cascade and hemostatic mechanisms, suggesting their significant involvement in the pathogenesis of Omicron infection. Complementing these proteomic insights, metabolomic analysis discerned 146 differentially expressed metabolites, intricately associated with pivotal metabolic pathways such as tryptophan metabolism, retinol metabolism, and steroid hormone biosynthesis. This comprehensive metabolic profiling sheds light on the systemic implications of Omicron infection, underscoring profound alterations in metabolic equilibrium. CONCLUSIONS: This study substantially enriches our comprehension of the physiological ramifications induced by the Omicron variant, with a particular emphasis on the pivotal roles of coagulation and platelet pathways in disease pathogenesis. The discovery of these specific biomarkers illuminates their potential as critical targets for diagnostic and therapeutic strategies, providing invaluable insights for the development of tailored treatments and enhancing patient care in the dynamic context of the ongoing pandemic.


Assuntos
Multiômica , Proteômica , Humanos , Metabolômica , Metabolismo dos Lipídeos , Biomarcadores
8.
Glob Health Action ; 17(1): 2313340, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38381455

RESUMO

BACKGROUND: The impact of heat waves and atmospheric oxidising pollutants on residential mortality within the framework of global climate change has become increasingly important. OBJECTIVE: In this research, the interactive effects of heat waves and oxidising pollutants on the risk of residential mortality in Fuzhou were examined. Methods We collected environmental, meteorological, and residential mortality data in Fuzhou from 1 January 2016, to 31 December 2021. We then applied a generalised additive model, distributed lagged nonlinear model, and bivariate three-dimensional model to investigate the effects and interactions of various atmospheric oxidising pollutants and heat waves on the risk of residential mortality. RESULTS: Atmospheric oxidising pollutants increased the risk of residential mortality at lower concentrations, and O3 and Ox were positively associated with a maximum risk of 2.19% (95% CI: 0.74-3.66) and 1.29% (95% CI: 0.51-2.08). The risk of residential mortality increased with increasing temperature, with a strong and long-lasting effect and a maximum cumulative lagged effect of 1.11% (95% CI: 1.01, 1.23). Furthermore, an interaction between atmospheric oxidising pollutants and heat waves may have occurred: the larger effects in the longest cumulative lag time on residential mortality per 10 µg/m3 increase in O3, NO2 and Ox during heat waves compared to non-heat waves were [-3.81% (95% CI: -14.82, 8.63)]; [-0.45% (95% CI: -2.67, 1.81)]; [67.90% (95% CI: 11.55, 152.71)]; 16.37% (95% CI: 2.43, 32.20)]; [-3.00% (95% CI: -20.80, 18.79)]; [-0.30% (95% CI: -3.53, 3.04)]. The risk on heat wave days was significantly higher than that on non-heat wave days and higher than the separate effects of oxidising pollutants and heat waves. CONCLUSIONS: Overall, we found some evidence suggesting that heat waves increase the impact of oxidising atmospheric pollutants on residential mortality to some extent.


Assuntos
Poluentes Ambientais , Temperatura Alta , Humanos , Mudança Climática , Temperatura
9.
Sci Total Environ ; 912: 168443, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-37956846

RESUMO

Silver nanoparticles (AgNPs) and antibiotics inevitably co-exist in water environment. Nonetheless, little is known regarding the interactions between AgNPs and antibiotics or the effects of AgNPs on environmental behavior of antibiotics, particularly on sunlight-driven transformation. In the present work, we found that AgNPs obviously inhibit the photochemical decay of chlortetracycline (CTC), and CTC boosts the dissolution of AgNPs. With the help of electron paramagnetic resonance (EPR) and quenching experiment, we ascertained that these results originated from the competition between AgNPs against CTC for capturing 1O2 generated from CTC photosensitization. 1O2 reacting with CTC contributed mostly to CTC photodegradation, while 1O2 as well reacting with AgNPs leads to release of Ag+. When compared to reaction of 1O2 with CTC, 1O2 is prone to react with AgNPs, based on lower Gibbs free energy of AgNPs reacting with 1O2. Therefore, upon CTC co-existing with AgNPs, the release of Ag+ was accelerated and the photodegradation of CTC was inhibited obviously. Furthermore, the accelerated release of Ag+ significantly increased their toxicity toward E. coli cells under simulate sunlight irradiation. Overall, the findings demonstrate how AgNPs interact with CTC and how these interactions affect the environmental behaviors of CTC or AgNPs, allowing more accurate assessments of the risk to ecosystems posed by AgNPs coexisting with antibiotics.


Assuntos
Clortetraciclina , Nanopartículas Metálicas , Clortetraciclina/toxicidade , Fotólise , Prata/toxicidade , Nanopartículas Metálicas/toxicidade , Escherichia coli , Ecossistema , Antibacterianos/toxicidade
10.
J Plast Reconstr Aesthet Surg ; 88: 182-192, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37983981

RESUMO

BACKGROUND: Alopecia is a common and distressing medical condition that has been related to psychiatric disorders. Stem cell-derived conditioned medium (CM), a novel therapy for hair regeneration, has shown effectiveness in several trials. METHODS: This meta-analysis aims to explore the effectiveness of stem cell-derived CM in improving hair growth for patients of alopecia. We prospectively registered this systematic review and meta-analysis in PROSPERO (CRD42023410249). Clinical trials that the enrolled participants suffering from alopecia applied stem cell-derived CM were included. We calculated the mean and standard deviation for the hair density and thickness. RESULTS: Ten clinical trials were included in our analysis. On the basis of eight clinical trials (n = 221), our pooled results indicate that stem cell-derived CM is effective in increasing hair density (mean difference [MD]: 14.93, confidence interval [95% CI]: 10.20-19.67, p < 0.0001) and thickness (MD: 18.67, 95% CI: 2.75-34.59, p < 0.0001) (µm) in patients with alopecia. Moreover, our findings suggest that longer treatment duration is associated with significantly greater improvement than shorter treatment duration (p = 0.02). Three of the included studies were randomized controlled trials (RCTs), and when we specifically analyzed these RCTs; statistical significance could also be observed in terms of hair density (MD: 9.23, 95% CI: 1.79-16.68, p < 0.00001). KEY MESSAGES: Stem cell-derived conditioned medium can effectively increase hair density and thickness for alopecia, and there is no difference between each method (topical application, microneedling, or injection).


Assuntos
Alopecia , Cabelo , Humanos , Meios de Cultivo Condicionados , Alopecia/terapia , Células-Tronco , Duração da Terapia
11.
CNS Neurosci Ther ; 30(2): e14361, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37491837

RESUMO

AIMS: We aimed to investigate whether peripheral T-cell subsets could be a biomarker to distinguish major depressive disorder (MDD) and bipolar disorder (BD). METHODS: Medical records of hospitalized patients in the Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, from January 2015 to September 2020 with a discharge diagnosis of MDD or BD were reviewed. Patients who underwent peripheral blood examination of T-cell subtype proportions, including CD3+, CD4+, CD8+ T-cell, and natural killer (NK) cells, were enrolled. The Chi-square test, t-test, or one-way analysis of variance were used to analyze group differences. Demographic profiles and T-cell data were used to construct a random forest classifier-based diagnostic model. RESULTS: Totally, 98 cases of BD mania, 459 cases of BD depression (BD-D), and 458 cases of MDD were included. There were significant differences in the proportions of CD3+, CD4+, CD8+ T-cell, and NK cells among the three groups. Compared with MDD, the BD-D group showed higher CD8+ but lower CD4+ T-cell and a significantly lower ratio of CD4+ and CD8+ proportions. The random forest model achieved an area under the curve of 0.77 (95% confidence interval: 0.71-0.83) to distinguish BD-D from MDD patients. CONCLUSION: These findings imply that BD and MDD patients may harbor different T-cell inflammatory patterns, which could be a potential diagnostic biomarker for mood disorders.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Humanos , Transtorno Bipolar/diagnóstico , Transtorno Depressivo Maior/diagnóstico , Estudos Retrospectivos , Subpopulações de Linfócitos T , Biomarcadores
12.
Cryobiology ; 114: 104835, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38070820

RESUMO

Cryopreservation is a crucial step in the supply process of off-the-shelf chimeric antigen receptor engineered natural killer (CAR-NK) cell products. Concerns have been raised over the clinical application of dimethyl sulfoxide (Me2SO) due to the potential for adverse reactions following infusion and limited cell-specific cytotoxic effects if misapplied. In this study, we developed a Me2SO-free cryopreservation medium specifically tailored for CAR-NK cells to address this limitation. The cryopreservation medium was formulated using human serum albumin (HSA) and glycerol as the base components. Following initial screening of seven clinically-compatible solutions, four with cryoprotective properties were identified. These were combined and optimized into a single formulation: IF-M. The viability, phenotype, and function of CAR-NK cells were evaluated after short-term and long-term cryopreservation to assess the effectiveness of IF-M, with Me2SO serving as the control group. The viability and recovery of CAR-NK cells in the IF-M group were significantly higher than those in the Me2SO group within 90 days of cryopreservation. Moreover, after 1 year of cryopreservation the cytotoxic capacity of CAR-NK cells cryopreserved with IF-M was comparable to that of fresh CAR-NK cells and significantly superior to that of CAR-NK cells cryopreserved in Me2SO. The CD107a expression intensity of CAR-NK cells in IF-M group was significantly higher than that of Me2SO group. No statistical differences were observed in other indicators under different cryopreservation times. These results underscore the robustness of IF-M as a suitable replacement for traditional Me2SO-based cryopreservation medium for the long-term cryopreservation and clinical application of off-the-shelf CAR-NK cells.

13.
Sci Rep ; 13(1): 20814, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012234

RESUMO

Research has shown that the concentration and composition of biological samples may change after long-term ultra-low temperature storage. Consequently, this study examined the effect of ultra-low temperature storage on serum sIgE detection by comparing sIgE concentrations at various durations from the time of sample storage to subsequent testing. We selected 40 serum samples from the Guangzhou Medical University Affiliated First Hospital Biobank, which had been tested for house dust mites, dog hair, tobacco mold, cockroaches, and cow milk allergen sIgE. Samples were categorized by storage duration: 14 samples stored for 10 years, 12 for 5 years, and 14 for 3 years. They were also classified by sIgE positive levels: 15 samples at levels 1-2, 15 at levels 3-4, and 10 at levels 5-6. The allergen sIgE of these samples was retested using the same technology. Regardless of the type of allergen or the level of positivity, the majority of sIgE concentrations measured at the time of storage were higher than the current measurements, but the difference was not statistically significant. The correlation between the sIgE results at the time of storage and the current results was high for samples stored for 10 years (rs = 0.991, P < 0.001) and 5 years (rs = 0.964, P < 0.001). Serum allergen sIgE is stable when stored under ultra-low temperature conditions, making the construction of a biological sample bank for allergic diseases feasible. This will facilitate researchers in quickly obtaining samples, conducting technical research, and translating findings, thereby promoting the development of the field of allergy through integration of industry, academia, and research.


Assuntos
Bancos de Espécimes Biológicos , Hipersensibilidade , Humanos , Feminino , Animais , Bovinos , Cães , Temperatura , Estudos de Viabilidade , Imunoglobulina E , Hipersensibilidade/diagnóstico , Alérgenos
14.
Int J Biol Sci ; 19(14): 4539-4551, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781027

RESUMO

Bipolar disorder (BD), a disabling mental disorder, is featured by the oscillation between episodes of depression and mania, along with disturbance in the biological rhythms. It is on an urgent demand to identify the intricate mechanisms of BD pathophysiology. Based on the continuous progression of neural science techniques, the dysfunction of circuits in the central nervous system was currently thought to be tightly associated with BD development. Yet, challenge exists since it depends on techniques that can manipulate spatiotemporal dynamics of neuron activity. Notably, the emergence of optogenetics has empowered researchers with precise timing and local manipulation, providing a possible approach for deciphering the pathological underpinnings of mental disorders. Although the application of optogenetics in BD research remains preliminary due to the scarcity of valid animal models, this technique will advance the psychiatric research at neural circuit level. In this review, we summarized the crucial aberrant brain activity and function pertaining to emotion and rhythm abnormities, thereby elucidating the underlying neural substrates of BD, and highlighted the importance of optogenetics in the pursuit of BD research.


Assuntos
Transtorno Bipolar , Animais , Humanos , Transtorno Bipolar/genética , Transtorno Bipolar/complicações , Optogenética , Sistema Nervoso Central
15.
Microorganisms ; 11(10)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37894092

RESUMO

The COVID-19 pandemic has highlighted the urgent need for accurate, rapid, and cost-effective diagnostic methods to identify and track the disease. Traditional diagnostic methods, such as PCR and serological assays, have limitations in terms of sensitivity, specificity, and timeliness. To investigate the potential of using protein-peptide hybrid microarray (PPHM) technology to track the dynamic changes of antibodies in the serum of COVID-19 patients and evaluate the prognosis of patients over time. A discovery cohort of 20 patients with COVID-19 was assembled, and PPHM technology was used to track the dynamic changes of antibodies in the serum of these patients. The results were analyzed to classify the patients into different disease severity groups, and to predict the disease progression and prognosis of the patients. PPHM technology was found to be highly effective in detecting the dynamic changes of antibodies in the serum of COVID-19 patients. Four polypeptide antibodies were found to be particularly useful for reflecting the actual status of the patient's recovery process and for accurately predicting the disease progression and prognosis of the patients. The findings of this study emphasize the multi-dimensional space of peptides to analyze the high-volume signals in the serum samples of COVID-19 patients and monitor the prognosis of patients over time. PPHM technology has the potential to be a powerful tool for tracking the dynamic changes of antibodies in the serum of COVID-19 patients and for improving the diagnosis and prognosis of the disease.

16.
Opt Express ; 31(20): 32172-32187, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37859026

RESUMO

We numerically investigate the excitation of vector solitonic pulse with orthogonally polarized components via free-carrier effects in microresonators with normal group velocity dispersion (GVD). The dynamics of single, dual and oscillated vector pulses are unveiled under turn-key excitation with a single frequency-fixed CW laser source. Parameter spaces associated with detuning, polarization angle, interval between the pumped orthogonal resonances and pump amplitude have been revealed. Different vector pulse states can also be observed exploiting the traditional pump scanning scheme. Simultaneous and independent excitation regimes are identified due to varying interval of the orthogonal pump modes. The nonlinear coupling between two modes contributes to the distortion of the vector pulses' profile. The free-carrier effects and the pump polarization angle provide additional degrees of freedom for efficiently controlling the properties of the vector solitonic microcombs. Moreover, the crucial thermal dynamics in microcavities is discussed and weak thermal effects are found to be favorable for delayed vector pulse formation. These findings reveal complex excitation mechanism of solitonic structures and could provide novel routes for microcomb generation.

17.
Can J Infect Dis Med Microbiol ; 2023: 7253779, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37849973

RESUMO

Background: SARS-CoV-2 induces apoptosis and amplifies the immune response by continuously stressing the endoplasmic reticulum (ER) after invading cells. This study aimed to establish a protein-metabolic pathway associated with ER dysfunction based on the invasion mechanism of SARS-CoV-2. Methods: This study included 17 healthy people and 46 COVID-19 patients, including 38 mild patients and 8 severe patients. Proteomics and metabolomics were measured in the patient plasma collected at admission and one week after admission. The patients were further divided into the aggravation and remission groups based on disease progression within one week of admission. Results: Cross-sectional comparison showed that endoplasmic reticulum molecular chaperone-binding immunoglobulin protein (ERC-BiP), angiotensinogen (AGT), ceramide acid (Cer), and C-reactive protein (CRP) levels were significantly increased in COVID-19 patients, while the sphingomyelin (SM) level was significantly decreased (P < 0.05). In addition, longitudinal comparative analysis found that the temporal fold changes of ERC-BiP, AGT, Cer, CRP, and SM were significantly different between the patients in the aggravation and remission groups (P < 0.05). ERC-BiP, AGT, and Cer levels were significantly increased in aggravation patients, while SM was significantly decreased (P < 0.05). Meanwhile, ERC-BiP was significantly correlated with AGT (r = 0.439; P < 0.001). Conclusions: ERC-BiP can be used as a core index to reflect the degree of ER stress in COVID-19 patients, which is of great value for evaluating the functional state of cells. A functional pathway for AGT/ERC-BiP/glycolysis can directly assess the activation of unfolded protein reactions. The ERC-BiP pathway is closer to the intracellular replication pathway of SARS-CoV-2 and may help in the development of predictive protocols for COVID-19 exacerbation.

18.
J Orthop Surg Res ; 18(1): 687, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710299

RESUMO

BACKGROUND: Diabetic foot ulcers (DFU) are a serious complication of diabetes that lead to significant morbidity and mortality. Recent studies reported that exosomes secreted by human adipose tissue-derived mesenchymal stem cells (ADSCs) might alleviate DFU development. However, the molecular mechanism of ADSCs-derived exosomes in DFU is far from being addressed. METHODS: Human umbilical vein endothelial cells (HUVECs) were induced by high-glucose (HG), which were treated with exosomes derived from nuclear factor I/C (NFIC)-modified ADSCs. MicroRNA-204-3p (miR-204-3p), homeodomain-interacting protein kinase 2 (HIPK2), and NFIC were determined using real-time quantitative polymerase chain reaction. Cell proliferation, apoptosis, migration, and angiogenesis were assessed using cell counting kit-8, 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, wound healing, and tube formation assays. Binding between miR-204-3p and NFIC or HIPK2 was predicted using bioinformatics tools and validated using a dual-luciferase reporter assay. HIPK2, NFIC, CD81, and CD63 protein levels were measured using western blot. Exosomes were identified by a transmission electron microscope and nanoparticle tracking analysis. RESULTS: miR-204-3p and NFIC were reduced, and HIPK2 was enhanced in DFU patients and HG-treated HUVECs. miR-204-3p overexpression might abolish HG-mediated HUVEC proliferation, apoptosis, migration, and angiogenesis in vitro. Furthermore, HIPK2 acted as a target of miR-204-3p. Meanwhile, NFIC was an upstream transcription factor that might bind to the miR-204-3p promoter and improve its expression. NFIC-exosome from ADSCs might regulate HG-triggered HUVEC injury through miR-204-3p-dependent inhibition of HIPK2. CONCLUSION: Exosomal NFIC silencing-loaded ADSC sheet modulates miR-204-3p/HIPK2 axis to suppress HG-induced HUVEC proliferation, migration, and angiogenesis, providing a stem cell-based treatment strategy for DFU.


Assuntos
Diabetes Mellitus , Pé Diabético , Exossomos , MicroRNAs , Humanos , Fatores de Transcrição NFI , Pé Diabético/genética , Pé Diabético/terapia , Células Endoteliais , Células-Tronco , MicroRNAs/genética , Proteínas de Transporte , Proteínas Serina-Treonina Quinases/genética
19.
Virology ; 587: 109877, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37688922

RESUMO

Porcine epidemic diarrhea virus (PEDV) has catastrophic impacts on the global pig industry. However, there remains no effective drugs for PEDV infection. Ivermectin is an FDA-approved anthelmintic drug used to treat worm infections. In this study, we reported the broad-spectrum antiviral activity of Ivermectin in vitro. Ivermectin can inhibit PEDV infections of different genotypes. Avermectin derivatives can also inhibit PEDV infections. A time of addition assay showed that Ivermectin exhibited potent anti-PEDV activity when added simultaneously with or post virus infection. Furthermore, Ivermectin significantly inhibited the late stage of viral infection by affecting viral release. RNA sequencing indicates Ivermectin induces cell cycle arrest, which may be related to its ability to inhibit viral release. Interestingly, when combined with Niclosamide, Ivermectin demonstrated an enhanced anti-PEDV effect. These findings highlight Ivermectin as a novel antiviral agent with potential for the development of drugs against PEDV infection.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Suínos , Chlorocebus aethiops , Antivirais/farmacologia , Antivirais/metabolismo , Vírus da Diarreia Epidêmica Suína/genética , RNA-Seq , Ivermectina/farmacologia , Transdução de Sinais , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/genética , Células Vero
20.
Sci Rep ; 13(1): 14855, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684333

RESUMO

This study aims to reduce the cost of allergen testing for Guangzhou, China by limiting the number of allergens for which patients are tested, and provide a testing panel to improve diagnostic and therapeutic efficiency. This retrospective study of real-world data from 2012 to 2019 included 39,570 patients with suspected allergies in Guangzhou, southern China. All the patients were tested for one or more of the following allergens serum specific immunoglobulin E (sIgE): Dermatophagoides pteronyssinus, Dermatophagoides farinae, cat dander, dog dander, Artemisia vulgaris, Aspergillus fumigatus, Alternaria alternata, Blattella germanica, egg whites, milk, wheat, peanuts, soybeans, Cancer pagurus, and Penaeus monodon by PhadiaCAP 1000. Totally, only the positive rates of allergens sIgE in D. farinae, D. pteronyssinus, milk, egg whites, B. germanica, C. pagurus, A. alternata, and P. monodon were > 10%, the other allergens were between 4-7%. Moreover, among the allergic diseases, dust mites exhibited the overall highest positive rate, followed by milk and B. germanica. In children, milk was the main allergen, whereas in adults, mites, cockroaches, shrimp, and crab allergens had higher positive rates. The optimal scale analysis shows that the multiple sensitization classification of patients can be divided into three categories: I D. farinae and D. pteronyssinus; II. C. pagurus, P. monodon, and B. germanica; III. Milk and egg whites. Generally, a panel including 4 allergens can detect > 90% of the potential allergy in this local population. In Guangzhou, southern China, D. farinae, milk, B. germanica, and A. alternata as a panel screening allergy for suspected allergic patients was suggested base on this study.


Assuntos
Anomuros , Blattellidae , Hipersensibilidade , Animais , Cães , Alérgenos , Estudos Retrospectivos , Cetáceos , China/epidemiologia , Imunoglobulina E
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...